92 research outputs found

    COVID-19 lessons to protect populations against future pandemics by implementing PPPM principles in healthcare

    Get PDF
    The coronavirus disease 2019 (COVID-19) pandemic has continued for more than 3 years, placing a huge burden on society worldwide. Although the World Health Organization (WHO) has declared an end to COVID-19 as a Public Health Emergency of International Concern (PHEIC), it is still considered a global threat. Previously, there has been a long debate as to whether the COVID-19 emergency will eventually end or transform into a more common infectious disease from a PHEIC, and how should countries respond to similar pandemics in the future more time-efficiently and cost-effectively. We reviewed the past, middle and current situation of COVID-19 based on bibliometric analysis and epidemiological data. Thereby, the necessity is indicated to change the paradigm from reactive healthcare services to predictive, preventive and personalised medicine (PPPM) approach, in order to effectively protect populations against COVID-19 and any future pandemics. Corresponding measures are detailed in the article including the involvement of multi-professional expertise, application of artificial intelligence, rapid diagnostics and patient stratification, and effective protection, amongst other to be considered by advanced health policy

    Commentary: A novel and effective ECG method to differentiate right from left ventricular outflow tract arrhythmias: Angle-corrected V2S

    Get PDF
    This commentary builds on the recently published original paper of Qiu et al. (1). The most common origin of premature ventricular complexes and ventricular tachycardias of patients in the absence of structural heart disease is the right and left ventricular outflow tracts (RVOT/LVOT). Catheter ablation (CA) has been an effective method for outflow tract ventricular arrhythmias (OTVAs) (2). It is necessary to predict the origin of OTVAs before CA for choosing the procedural strategy, reducing complications, and saving the operation time (3, 4). Qiu et al. presented a novel electrocardiogram (ECG) algorithm, “cardiac rotation-corrected” angle-corrected V2S (hereafter, V2S angle), to differentiate the LVOT origin from the RVOT origin with higher predictive accuracy (1). . .

    Association of immunoglobulin G N-glycosylation with carotid atherosclerotic plaque phenotypes and actual clinical cardiovascular events: A study protocol for a longitudinal prospective cohort study

    Get PDF
    Introduction Immune-inflammatory response plays a key role in the pathogenesis of atherosclerosis. IgG N-glycosylation is reported to be associated with the 10-year atherosclerotic cardiovascular disease risk score and subclinical atherosclerosis. However, the relationship of IgG glycosylation with actual clinical cardiovascular disease (CVD) events and plaque phenotypes has rarely been investigated. Therefore, this study aims to understand whether IgG glycosylation traits are correlated with actual clinical CVD events and plaque phenotypes. Methods and analysis Designed to verify the efficacy of IgG glycosylation as a risk for CVD events and screen potential biomarkers of CVD to prevent atherosclerosis occurrence, this longitudinal prospective cohort study will be conducted at the First Affiliated Hospital of Shantou University Medical College, China. In total, 2720 participants routinely examined by carotid ultrasound will be divided into different groups according to plaque phenotype characteristics. Ultra-performance liquid chromatography will be performed to separate and detect IgG N-glycans in serum collected at baseline and at the end of the first, second and third years. The primary outcome is the actual clinical CVD composite events, including non-fatal myocardial infarction, death due to coronary heart disease, and fatal or non-fatal stroke. Ethics and dissemination The Clinical Ethics Committee of the First Affiliated Hospital of Shantou University Medical College approved this study (number: B-2021-127). Findings of this study will be submitted for publication in peer-reviewed journals. Trial registration number ChiCTR2100048740

    Reap success from persistence

    Get PDF
    The road to success is long and arduous. Almost all Nobel prize laureates experienced tremendous efforts and countless failures before they made their scientific breakthroughs. Hypothesis-driven, independent and critical thinking, passion, repeated experiments and repetitive failures and running in circles on the entire scientific process finally approved their hypotheses

    Genetic and immunological insights into COVID-19 with acute myocardial infarction: Integrated analysis of mendelian randomization, transcriptomics, and clinical samples

    Get PDF
    Background: Globally, most deaths result from cardiovascular diseases, particularly ischemic heart disease. COVID-19 affects the heart, worsening existing heart conditions and causing myocardial injury. The mechanistic link between COVID-19 and acute myocardial infarction (AMI) is still being investigated to elucidate the underlying molecular perspectives. Methods: Genetic risk assessment was conducted using two-sample Mendelian randomization (TSMR) to determine the causality between COVID-19 and AMI. Weighted gene co-expression network analysis (WGCNA) and machine learning were used to discover and validate shared hub genes for the two diseases using bulk RNA sequencing (RNA-seq) datasets. Additionally, gene set enrichment analysis (GSEA) and single-cell RNA-seq (scRNA-seq) analyses were performed to characterize immune cell infiltration, communication, and immune correlation of the hub genes. To validate the findings, the expression patterns of hub genes were confirmed in clinical blood samples collected from COVID-19 patients with AMI. Results: TSMR did not find evidence supporting a causal association between COVID-19 or severe COVID-19 and AMI. In the bulk RNA-seq discovery cohorts for both COVID-19 and AMI, WGCNA’s intersection analysis and machine learning identified TLR4 and ABCA1 as significant hub genes, demonstrating high diagnostic and predictive value in the RNA-seq validation cohort. Single-gene GSEA and single-sample GSEA (ssGSEA) revealed immune and inflammatory roles for TLR4 and ABCA1, linked to various immune cell infiltrations. Furthermore, scRNA-seq analysis unveiled significant immune dysregulation in COVID-19 patients, characterized by altered immune cell proportions, phenotypic shifts, enhanced cell-cell communication, and elevated TLR4 and ABCA1 in CD16 monocytes. Lastly, the increased expression of TLR4, but not ABCA1, was validated in clinical blood samples from COVID-19 patients with AMI. Conclusion: No genetic causal link between COVID-19 and AMI and dysregulated TLR4 and ABCA1 may be responsible for the development of immune and inflammatory responses in COVID-19 patients with AMI

    Genetic and immunological insights into COVID-19 with acute myocardial infarction: integrated analysis of mendelian randomization, transcriptomics, and clinical samples

    Get PDF
    BackgroundGlobally, most deaths result from cardiovascular diseases, particularly ischemic heart disease. COVID-19 affects the heart, worsening existing heart conditions and causing myocardial injury. The mechanistic link between COVID-19 and acute myocardial infarction (AMI) is still being investigated to elucidate the underlying molecular perspectives.MethodsGenetic risk assessment was conducted using two-sample Mendelian randomization (TSMR) to determine the causality between COVID-19 and AMI. Weighted gene co-expression network analysis (WGCNA) and machine learning were used to discover and validate shared hub genes for the two diseases using bulk RNA sequencing (RNA-seq) datasets. Additionally, gene set enrichment analysis (GSEA) and single-cell RNA-seq (scRNA-seq) analyses were performed to characterize immune cell infiltration, communication, and immune correlation of the hub genes. To validate the findings, the expression patterns of hub genes were confirmed in clinical blood samples collected from COVID-19 patients with AMI.ResultsTSMR did not find evidence supporting a causal association between COVID-19 or severe COVID-19 and AMI. In the bulk RNA-seq discovery cohorts for both COVID-19 and AMI, WGCNA’s intersection analysis and machine learning identified TLR4 and ABCA1 as significant hub genes, demonstrating high diagnostic and predictive value in the RNA-seq validation cohort. Single-gene GSEA and single-sample GSEA (ssGSEA) revealed immune and inflammatory roles for TLR4 and ABCA1, linked to various immune cell infiltrations. Furthermore, scRNA-seq analysis unveiled significant immune dysregulation in COVID-19 patients, characterized by altered immune cell proportions, phenotypic shifts, enhanced cell-cell communication, and elevated TLR4 and ABCA1 in CD16 monocytes. Lastly, the increased expression of TLR4, but not ABCA1, was validated in clinical blood samples from COVID-19 patients with AMI.ConclusionNo genetic causal link between COVID-19 and AMI and dysregulated TLR4 and ABCA1 may be responsible for the development of immune and inflammatory responses in COVID-19 patients with AMI

    Nowo rozpoznana ciężka stenoza aortalna u 77-letniej kobiety

    Get PDF

    Does warfarin or rivaroxaban at low anticoagulation intensity provide a survival benefit to Asian patients with atrial fibrillation?

    Get PDF
    Background: Low-dose rivaroxaban and low-intensity warfarin are widely used in Asia for patients with atrial fibrillation (AF). However, in Asians, it is unclear whether low-dose rivaroxaban and low-intensity warfarin can improve the prognosis of AF. In this study, we investigate the survival benefits of low-dose rivaroxaban and low-intensity warfarin in Asian patients with AF in clinical practice. Methods: This cohort study used medical records in a single tertiary hospital in China, between 2019 and 2020, to identify patients with AF who used rivaroxaban or warfarin, or had no anticoagulant therapy. Follow-ups were performed through telephone contact or medical record review. Cox proportional hazards models were used to compare the risk of mortality of patients in the anticoagulant-untreated group vs. warfarin-treated groups and rivaroxaban-treated groups. Results: A total of 1727 AF patients, discharged between 2019 and 2020, were enrolled in this cohort, of which 873 patients did not use any anticoagulant, 457 patients received warfarin and 397 patients used rivaroxaban. Multivariable analysis showed that, of all the warfarin groups, patients with an international normalized ratio (INR) below 2, good INR control, or poor INR control had a significantly lower risk of mortality compared with that of patients without anticoagulants (HR 0.309, p = 0.0001; HR 0.387, p = 0.0238; HR 0.363, p \u3c 0.0001). Multivariable Cox proportional hazard analyses also demonstrated that, compared with the no anticoagulant group, all rivaroxaban dosage groups (≤ 10 mg, HR 0.456, p = 0.0129; 15 mg, HR 0.246, p = 0.0003; 20 mg, HR 0.264, p = 0.0237) were significantly associated with a lower risk of mortality. Conclusion: Despite effects being smaller than observed with recommended optimal anticoagulation, the use of warfarin with an INR below 2, poor INR control and the use of low-dose rivaroxaban may still provide survival benefits, suggesting viable alternatives that enable physicians to better resolve decisional conflicts concerning the risks and benefits of anticoagulant therapies, as well as for patients in need of but unable to receive standard anticoagulant therapy due to bleeding risk or other factors, such as financial burden, concerns of adverse outcomes, as well as low treatment compliance and persistence

    Diagnostic accuracy of autoverification and guidance system for COVID-19 RT-PCR results

    Get PDF
    Background: To date, most countries worldwide have declared that the pandemic of COVID-19 is over, while the WHO has not officially ended the COVID-19 pandemic, and China still insists on the personalized dynamic COVID-free policy. Large-scale nucleic acid testing in Chinese communities and the manual interpretation for SARS-CoV-2 nucleic acid detection results pose a huge challenge for labour, quality and turnaround time (TAT) requirements. To solve this specific issue while increase the efficiency and accuracy of interpretation, we created an autoverification and guidance system (AGS) that can automatically interpret and report the COVID-19 reverse transcriptase-polymerase chain reaction (RT-PCR) results relaying on computer-based autoverification procedure and then validated its performance in real-world environments. This would be conductive to transmission risk prediction, COVID-19 prevention and control and timely medical treatment for positive patients in the context of the predictive, preventive and personalized medicine (PPPM). Methods: A diagnostic accuracy test was conducted with 380,693 participants from two COVID-19 test sites in China, the Hong Kong Hybribio Medical Laboratory (n = 266,035) and the mobile medical shelter at a Shanghai airport (n = 114,658). These participants underwent SARS-CoV-2 RT-PCR from March 28 to April 10, 2022. All RT-PCR results were interpreted by laboratorians and by using AGS simultaneously. Considering the manual interpretation as gold standard, the sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and accuracy were applied to evaluate the diagnostic value of the AGS on the interpretation of RT-PCR results. Results: Among the 266,035 samples in Hong Kong, there were 16,356 (6.15%) positive, 231,073 (86.86%) negative, 18,606 (6.99%) indefinite, 231,073 (86.86%, negative) no retest required and 34,962 (13.14%, positive and indefinite) retest required; the 114,658 samples in Shanghai consisted of 76 (0.07%) positive, 109,956 (95.90%) negative, 4626 (4.03%) indefinite, 109,956 (95.90%, negative) no retest required and 4702 (4.10%, positive and indefinite) retest required. Compared to the fashioned manual interpretation, the AGS is a procedure of high accuracy [99.96% (95%CI, 99.95–99.97%) in Hong Kong and 100% (95%CI, 100–100%) in Shanghai] with perfect sensitivity [99.98% (95%CI, 99.97–99.98%) in Hong Kong and 100% (95%CI, 100–100%) in Shanghai], specificity [99.87% (95%CI, 99.82–99.90%) in Hong Kong and 100% (95%CI, 99.92–100%) in Shanghai], PPV [99.98% (95%CI, 99.97–99.99%) in Hong Kong and 100% (95%CI, 99.99–100%) in Shanghai] and NPV [99.85% (95%CI, 99.80–99.88%) in Hong Kong and 100% (95%CI, 99.90–100%) in Shanghai]. The need for manual interpretation of total samples was dramatically reduced from 100% to 13.1% and the interpretation time fell from 53 h to 26 min in Hong Kong; while the manual interpretation of total samples was decreased from 100% to 4.1% and the interpretation time dropped from 20 h to 16 min at Shanghai. Conclusions: The AGS is a procedure of high accuracy and significantly relieves both labour and time from the challenge of large-scale screening of SARS-CoV-2 using RT-PCR. It should be recommended as a powerful screening, diagnostic and predictive system for SARS-CoV-2 to contribute timely the ending of the COVID-19 pandemic following the concept of PPPM

    Heritability enrichment of immunoglobulin G N-glycosylation in specific tissues

    Get PDF
    Genome-wide association studies (GWAS) have identified over 60 genetic loci associated with immunoglobulin G (IgG) N-glycosylation; however, the causal genes and their abundance in relevant tissues are uncertain. Leveraging data from GWAS summary statistics for 8,090 Europeans, and large-scale expression quantitative trait loci (eQTL) data from the genotype-tissue expression of 53 types of tissues (GTEx v7), we derived a linkage disequilibrium score for the specific expression of genes (LDSC-SEG) and conducted a transcriptome-wide association study (TWAS). We identified 55 gene associations whose predicted levels of expression were significantly associated with IgG N-glycosylation in 14 tissues. Three working scenarios, i.e., tissue-specific, pleiotropic, and coassociated, were observed for candidate genetic predisposition affecting IgG N-glycosylation traits. Furthermore, pathway enrichment showed several IgG N-glycosylation-related pathways, such as asparagine N-linked glycosylation, N-glycan biosynthesis and transport to the Golgi and subsequent modification. Through phenome-wide association studies (PheWAS), most genetic variants underlying TWAS hits were found to be correlated with health measures (height, waist-hip ratio, systolic blood pressure) and diseases, such as systemic lupus erythematosus, inflammatory bowel disease, and Parkinson’s disease, which are related to IgG N-glycosylation. Our study provides an atlas of genetic regulatory loci and their target genes within functionally relevant tissues, for further studies on the mechanisms of IgG N-glycosylation and its related diseases
    • …
    corecore